Thursday, 25 October 2012

Exponent Laws



As you all know, we went back in time a few days ago, back... to grade 9. For those of you who weren't there, here is the review on Exponent Laws (Power Laws) .

Rule #1 When multiplying with exponents, simply add the exponents and the equation will become much simpler.

for example:
                     3         8    <--- they're exponents okay?
                ( x     ) ( x    )
                     
               Since both constants in the equation are the same, you can add the exponents.

                    3    +  5          8
                ( x   ) ( x   ) = ( x   )

Of course, you could always write out the equation like this:

                    3       5                                                8
                ( x   ) ( x   ) = (x*x*x) + (x*x*x*x*x) = x

But. People who do math professionally (or anyone who has done it frequently) will know that we are incredibly lazy when it comes to work and always take the shortest route to whatever we are trying to do, so use the first equation (this also applies to all exponent laws that will appear on this post).


Rule #2

When dividing with exponents that have the same constant, simply subtract the exponents from each other.

ex.       5     3        2                                                                                                        
         x    / x    =  x                                                                                                                          
                                                                                                                                                           

Rule #3   

If a constant ever has an exponent of  "0", then the product will always be one.

ex.         0
           x    = 1


Rule #4
                                                                                        5   3    
When a power is the base of another power, like this:  ( x      )     multiply the two exponents together to get one exponent in order to simplify the equation. so it'll look like this:          15
                                                                                                        ( x      )                              

Rule #5

When dividing an exponent by an exponent with an exponent base outside the exponent equation  
                       m   t
 like this:    (  x  )          
                 ____           multiply the inner exponents by the outer exponent (multiply m + n by t).
                       n                
                 ( y     )

Rule #6

If you have a power with a negative exponent it can be written as the reciprocal with a positive exponent.
                            -3          
In other words:   3      =    _1_
                                          3





If I have left anything out from the lesson plans, feel free to comment, or tell me in class when you see me.






Monday, 22 October 2012

Fractional Exponents

This class we learned about fractional exponents.
What fractional exponents do is give us another method of writing radicals.
The mathimatical way of saying it is to take the denominator of the fraction
and use it as the index of the radical, like this:
 271/3 = 3√27
All you do is take The 3 from the 1/3 and put it in front of the radical,
which it is now called the index.
271/ = 3√27
Now the one that is left over you put behind the 27, so what you're 
doing is just grouping the 27 and 1 together, and putting it in the radical,
and they are both called the radicand.
=3√271
Because 271 equals 27, and mathematicians are lazy, if something times itself 
equals the same number, you don't have to put it.  
=3√27

Sunday, 21 October 2012

Silly Math Jokes!! :P


JOKE NO.1:

Teacher: "Who can tell me what 7 times 6 is?"
Student: "It's 42!"
Teacher: "Very good! - And who can tell me what 6 times 7 is?"
Same student: "It's 24!"


JOKE NO.2:

Q: What does a mathematician present to his fiancée when he wants to propose?
A: A polynomial ring!



( It's not really related to what we're learning right now..but it's still about math!!)



Wednesday, 17 October 2012

Radical Rules


Radical Rules


√36 = 6

Try to find out if the radicand has any perfect squares within it. (like 4 and 9).. when multiplied together equal, for example, 36.

√(4)(9)
√4 * 
√9

 Since 4 and 9 are perfect squares, you can easily find out what number times itself equals them. ( 2*2= 4, 3*3= 9).

2*3 = 6

So, 
√36 = 6.   Or 
√4/9 = √4 / √9 = 2/3

Mixed Radical

Example:
√80 
Find the factors of 80. 
Factor Tree:                      


















After, you are left with 2* 2* 2* 2 * 5. 

= √(2x2)(2x2)x5
Two groups of 2's. So 4^2 * 5.
= √4^2 * √5= 4√5Simplify:√63√9 * 7 = √9 * √7 ^^^ Perfect square! (9)= 3√7                  √63 is between perfect squares √49 and √64. The estimate will be closer around 7.9, since is closer to √64. 
√49 = 7
√63 = 7.9 (guess) ... 7.937253933193772 (actually answer)
√64 = 8
Radicals are the opposite of powers.

Mixed Radicals...again.

a
x .. The 'a' value has been simplified or removed from the radical.

Entire         <---
>                Mixed√12                                       2√3√32                                       4√2 ....
ex: 
√32 = √16 * 2 = √16 * √ 2 = 4√2 .. (4x4=16)
or: 
√32
      = 
√8 * √4
      = 
√2 * √4 * 2 = 4√2

Simplify:

500                      √125                      √96                      √200                       √90                 √112
√100 * √5             √25 * √5               √16 * √6                √100 * √2                  √9 * √10         √16 * √7
=10
√5                   = 5√5                  = 4√6                   = 10√2                      = 3√10            = 4
√7

Wednesday, 10 October 2012

Polynomial/Factoring Review Pt2

Backward



















Finding factors


ex.

 12- 1*12,  2*6,  3*8,  3*4

24- 1*24,  2*12,  3*8, 4*6


x2- (x)(x)



Prime Factorization

ex.          64   
                               
                   8 * 8                                       
                                                           
         2*2*2*2*2*2   
           

Reverse Distributive Property

Find the GCF (Greatest common factor)

ex. -64x2+112x

16x(-4x+7)


What did I do? Well lets go forward.

16x(-4x)+ 16x(7)

First -64x2 Last 112x

Together it equals  -64x2+112x

Still confused? (I'm not a teacher so yes you are)


                                                                                  

Reverse FOIL (refer to page 1 for FOIL)









































This may be rough but for a question like this you need to find two numbers when multiplied equal the last term and add together to equal the second term.

So you then  separate the question into two binomials like so.

(x+3) (x+5) You can see I took x2 separated it and put the 3 on one side and the 5 on the other. Try FOIL to check your answer.

Please click this link he explains it perfectly 
LINK---------
Reverse FOIL
LINK---------

It will lead you to this video I timed it for this specific point but feel free to watch the entire video.


























Alright guys im heading off to the grad awards I will be sure to add more this evening when I return (3 step proccess)




The 3 step plan


Alright guys I was going to write out my notes but it seems the wonderful internet has done it for me, click the link below for a detailed explanation on how to factor a polynomial with the three step plan.

------------
------------

Hope this helped.

To students in New York good luck on the test ;)

New York people                                                                Us







Below I will include a link to the first page if you missed part 1 going forward 




Going Forward (part 1)























Tuesday, 9 October 2012

Polynomial/Factoring Review

Forward

How do I....

   (Monomial)(Monomial)
Solve the question in this order.
  1. Sign
  2. Coefficant
  3. Variable

Ex (-3x2)(7x4y)

 We know it will be negative -
multiply Coefficants -21
add variables/exponents -21x6y


How do I....

(Monomial)(Polynomial)

Use the Distributive Property

Ex  3(X+7)

=3x+21

We multiply the term in front of the brackets times the terms within them and add the results.


















As you can see above -7xis multiplied through the term and we get our answer below.



How do I....

(Binomial)(Binomial)


Use the FOIL Technique.




(Credit to Free math Help)





















How do I....

(Binomial)(Polynomial)

Use the Distributive Property

I recommend checking this site out -LINK- In there page they have examples and interactive tutorials on how to do all these equations. 




























Below is a link to part 2 Going backwards


Going backwards (part 2)